PART A

1) State the number of elements (or members) in each set.

- a) {blue, green, red, yellow}
- b) {a,b,c,d,e,f,g}
- c) {Ontario, Alberta, Manitoba}
- d) $\{2,5,6,8,10\}$ e) $\{-9,-8,-7\}$ f) $\{0,1\}$
- g) {0}
- h) {1, 2, 3, 4, 5, ...}

i) { }

2) Explain why the set $\{7,9,12\}$ is a subset of the set $\{5,6,7,8,9,10,11,12\}$.

3) Explain why the set $\{0,1,4,9,16\}$ is not a subset of the set $\{1,2,3,4,5,...\}$.

4) Match each parent set on the left with its corresponding subset on the right.

- a) $\{-8, -7, -6, -5, -4, -3, -2, -1\}$
- i) {1,3,5,7,9}
- b) $\{-8, -6, -4, -2, 0, 2, 4, 6, 8, \dots\}$
- ii) $\{-13\}$

c) $\{1,2,3,4,5...\}$

iii) $\{0, 2, 4, 6, 8, ...\}$

d) $\{..., -9, -7, -5, -3, -1\}$

iv) $\{-1, -2, -3\}$

5) Express the following sets in braces, { }.

- a) The set of natural numbers less than 10.
- b) The set of odd integers from -5 to 5.
- c) The set of all whole numbers.
- d) The set of all integers.
- e) The set of all even whole numbers greater than or equal to 20.
- f) The set of all integers that are multiples of 5.

PART B

- 6) List all of the subsets of the set {1,2}.
- 7) List all of the subsets of the set $\{-1,0,1\}$.
- 8) Identify each of the following statements as true or false.
 - a) The set of whole numbers is a subset of the set of real numbers.
 - b) The set of natural numbers is a subset of the set of integers.
 - c) The set of whole numbers is a subset of the set of natural numbers.
 - d) The set of rational numbers is a subset of the set of real numbers.
 - e) The set of irrational numbers is a subset of the set of rational numbers.
 - f) The set of integers is a subset of the set of rational numbers.
 - g) $\{2,3,\pi\}$ is a subset of the rational numbers.
- 9) Jonah stated that subsets always have fewer elements than their parent sets. Is Jonah's claim correct? Explain.
- 10) Aaliyah claims that the sets $\{3,4,5\}$ and $\{4,5,3\}$ are the same. Is Aaliyah's claim true? Explain.

- 11) The set of real numbers and its subsets are often represented using the symbols shown on the right. Describe how each of the following pairs of sets are related.
 - a) \mathbb{N} and \mathbb{W}
 - b) \mathbb{W} and \mathbb{Z}
 - c) \mathbb{Z} and \mathbb{O}
 - d) \mathbb{Q} and \mathbb{P}

Set	Symbol
Natural Numbers	N
Whole Numbers	W
Integers	${\mathbb Z}$
Rational Numbers	Q
Irrational Numbers	\mathbb{P} or \mathbb{Q}' or $\mathbb{R} \setminus \mathbb{Q}$
Real Numbers	\mathbb{R}

12) Why do you think the notation $\mathbb{R} \setminus \mathbb{Q}$ is sometimes used to represent the set of irrational numbers?

- 13) Describe a real-life situation involving numbers where the set of natural numbers may not be adequate, but the set of whole numbers is sufficient.
- 14) Describe a real-life situation involving numbers where the set of whole numbers may not be adequate, but the set of integers is sufficient.
- 15) Describe a real-life situation involving numbers where the set of whole numbers may not be adequate, but the set of rational numbers is sufficient.
- 16) Describe a real-life situation in which you might encounter an irrational number.
- 17) Create a problem for which the answer involves the irrational number $\sqrt{5}$.
- 18) If set B is a subset of set A, and set C is a subset of set B, is set C a subset of set A. Explain.

PART C

- 19) A set that does not contain any elements is called the *empty set*. The symbol \emptyset is used to represent the empty set. Is \emptyset a subset of $\{1, 2, 3\}$? Explain.
- 20) Jean-Pierre claims that the empty set is a subset of every set. Is Jean-Pierre's claim correct? Explain.
- 21) The symbol \subseteq is often used to denote a subset. For example, if set P is a subset of set Q, we would write $P \subseteq Q$. If $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $B = \{2, 4, 6, 8\}$ and $C = \{4, 8\}$, indicate whether each of the following statements is true or false.
 - a) $A \subset B$

- b) $B \subset A$ c) $C \subset B$ d) $C \subset A$ e) $B \subset C$
- 22) There is a relationship between the number of elements in a set and the number of possible subsets.
 - a) Determine the total number of possible subsets for the set {1, 2, 3}.
 - b) Determine the total number of possible subsets for the set {1, 2, 3, 4}.
 - c) Hypothesize a rule for finding the number of subsets for a set containing *n* elements.
 - d) Use your hypothesis to predict the number of subsets for a set with 12 elements.

ANSWERS

- 1) a) 4 b) 7 c) 3 d) 5 e) 3 f) 2 g) 1 h) infinite i) 0
- 2) All of the elements of the set $\{7,9,12\}$ are contained in the set $\{5,6,7,8,9,10,11,12\}$. Therefore, the set $\{7,9,12\}$ is a subset of the set $\{5,6,7,8,9,10,11,12\}$.
- 3) Not all of the elements of the set $\{0,1,4,9,16\}$ are contained in the set $\{1,2,3,4,5,...\}$. Specifically, 0 is an member of the first set, but not the second. Therefore, the set $\{0,1,4,9,16\}$ is not a subset of the set $\{1,2,3,4,5,...\}$.
- **4)** a) iv b) iii c) i d) ii
- **5**) a) $\{1,2,3,4,5,6,7,8,9\}$ b) $\{-5,-3,-1,1,3,5\}$ c) $\{0,1,2,3,4,5,...\}$ d) $\{...,-3,-2,-1,0,1,2,3,...\}$ e) $\{20,22,24,26,28,...\}$ f) $\{...,-15,-10,-5,0,5,10,15,...\}$
- **6**) { }, {1}, {2}, {1,2}
- 7) { }, {-1}, {0}, {1}, {-1,0}, {-1,1}, {0,1}, {-1,0,1}
- 8) a) true b) true c) false d) true e) false f) true g) false
- 9) Jonah's claim is incorrect. A subset may have the same number of elements as its parent set. For example the parent set {1,2,3} and its subset {1,2,3} have the same number of members. (Note: A *proper subset* is a subset that is not equal to its parent set. A *proper subset* always has fewer elements than its parent set. No set is a *proper subset* of itself.)
- **10)** Aaliyah's claim is correct. Two sets are considered equal if (and only if) they contain the same elements. The order in which the elements are written does not matter.
- 11) a) Adding the element 0 to the set of natural numbers (\mathbb{N}) gives the set of whole numbers (\mathbb{W}) . \mathbb{N} is a subset of \mathbb{W} .
 - b) The integers (\mathbb{Z}) consist of the set of whole numbers (\mathbb{W}) with the negative natural numbers. \mathbb{W} is a subset of \mathbb{Z} .
 - c) The rational numbers (\mathbb{Q}) consist of all numbers of the form $\frac{a}{b}$, where a and b are elements of the integers (\mathbb{Z}). \mathbb{Z} is a subset of \mathbb{Q} .
 - d) The rational numbers (\mathbb{Q}) consist of all numbers of the form $\frac{a}{b}$, where a and b are integers, whereas the irrational numbers (\mathbb{P}) are all of the real numbers that cannot be expressed in that form. \mathbb{Q} and \mathbb{P} have no elements in common (they are *disjoint sets*).
- 12) The irrational numbers are all of the real numbers (\mathbb{R}) that are not rational numbers (\mathbb{Q}) . The notation $\mathbb{R}\setminus\mathbb{Q}$ denotes the removal of the rational numbers from the set of real numbers, thus leaving the set of irrational numbers.
- **13**) Answers may vary. For example, describing the number of seconds that have passed since a ball was thrown in the air. The number 0 would be needed to describe the instant the ball was thrown.
- **14)** Answers may vary. For example, describing temperature in degrees Celsius, where negative values are needed for temperatures below freezing.
- **15**) Answers may vary. For example, using an imperial tape measure to make measurements requiring fractions of an inch.
- **16)** Answers may vary. For example, when using the side-length relationship for right triangles (Pythagorean Theorem) to find the length of an unknown side in a right triangle.

- 17) Answers may vary. For example, determine the side length of a square that has an area of 5 cm².
- **18)** Yes. Since *C* is a subset of *B*, all of the elements of *C* are contained in *B*. Since *B* is a subset of *A*, all of the elements of *B* are contained in *A*, and thus all of the elements of *C* are also contained in *A*. Therefore, *C* is a subset of *A*.
- 19) Yes. A set containing no elements is a possible subset of the set $\{1, 2, 3\}$.
- **20**) Jean-Pierre's claim is correct. A set containing no elements is a possible subset of any set. (Note: A *proper subset* is a subset that is not equal to its parent set. The empty set is not a *proper subset* of itself.)
- 21) a) false b) true c) true d) true e) false
- 22) a) 8 b) 16 c) The total number of subsets is equal to 2^n . d) 4096